Notes on Hyperbolic Systems of Conservation Laws and Transport Equations
نویسنده
چکیده
Contents 1. Introduction 2 1.1. The Keyfitz and Kranzer system 2 1.2. Bressan's compactness conjecture 3 1.3. Ambrosio's renormalization Theorem 4 1.4. Well–posedness for the Keyfitz and Kranzer system 5 1.5. Renormalization conjecture for nearly incompressible BV fields 6 1.6. Plan of the paper 7 2. Preliminaries 8 2.1. Notation 8 2.2. Measure theory 9 2.3. Approximate continuity and approximate jumps 10 2.4. BV functions 11 2.5. Caccioppoli sets and Coarea formula 12 2.6. The Volpert Chain rule 12 2.7. Alberti's Rank–one Theorem 13 3. DiPerna–Lions theory for nearly incompressible flows 13 3.1. Lagrangian flows 13 3.2. Nearly incompressible fields and fields with the renormalization property 17 3.3. Existence and uniqueness of solutions to transport equations 20 3.4. Stability of solutions to transport equations 24 3.5. Existence, uniqueness, and stability of regular Lagrangian flows 26 4. Commutator estimates and Ambrosio's Renormalization Theorem 30 4.
منابع مشابه
Self-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملAn Overview on Some Results concerning the Transport Equation and Its Applications to Conservation Laws
We provide an informal overview on the theory of transport equations with non smooth velocity fields, and on some applications of this theory to the well-posedness of hyperbolic systems of conservation laws.
متن کاملEuler Equations and Related Hyperbolic Conservation Laws
Some aspects of recent developments in the study of the Euler equations for compressible fluids and related hyperbolic conservation laws are analyzed and surveyed. Basic features and phenomena including convex entropy, symmetrization, hyperbolicity, genuine nonlinearity, singularities, BV bound, concentration, and cavitation are exhibited. Global well-posedness for discontinuous solutions, incl...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملLecture Notes on Hyperbolic Conservation Laws
These notes provide an introduction to the theory of hyperbolic systems of conservation laws in one space dimension. The various chapters cover the following topics: 1. Meaning of the conservation equations and definition of weak solutions. 2. Shocks, Rankine-Hugoniot equations and admissibility conditions. 3. Genuinely nonlinear and linearly degenerate characteristic fields. Solution to the Ri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007